Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares

نویسندگان

  • Hyunsoo Kim
  • Haesun Park
چکیده

Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Non-negative matrix factorization (NMF) is a useful technique in approximating these high dimensional data. Sparse NMFs are also useful when we need to control the degree of sparseness in non-negative basis vectors or non-negative lower-dimensional representations. In this paper, we introduce novel sparse NMFs via alternating non-negativity-constrained least squares. We applied one of the proposed sparse NMFs to cancer class discovery and gene expression data analysis. Our experimental results illustrate that our proposed method achieves better clustering performance than NMF based on multiplicative update rules and sparse NMFs based on the gradient descent method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis

MOTIVATION Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approx...

متن کامل

Cancer Class Discovery Using Non-negative Matrix Factorization Based on Alternating Non-negativity-Constrained Least Squares

Many bioinformatics problems deal with chemical concentrations that should be non-negative. Non-negative matrix factorization (NMF) is an approach to take advantage of non-negativity in data. We have recently developed sparse NMF algorithms via alternating nonnegativity-constrained least squares in order to obtain sparser basis vectors or sparser mixing coefficients for each sample, which lead ...

متن کامل

Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method

The non-negative matrix factorization (NMF) determines a lower rank approximation of a matrix where an interger "!$# is given and nonnegativity is imposed on all components of the factors % & (' and % )'* ( . The NMF has attracted much attention for over a decade and has been successfully applied to numerous data analysis problems. In applications where the components of the data are necessaril...

متن کامل

Novel Multi-layer Non-negative Tensor Factorization with Sparsity Constraints

In this paper we present a new method of 3D non-negative tensor factorization (NTF) that is robust in the presence of noise and has many potential applications, including multi-way blind source separation (BSS), multi-sensory or multi-dimensional data analysis, and sparse image coding. We consider alphaand beta-divergences as error (cost) functions and derive three different algorithms: (1) mul...

متن کامل

Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006